892 research outputs found

    Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones

    Full text link
    The effects of multi-layered clouds in the atmospheres of Earth-like planets orbiting different types of stars are studied. The radiative effects of cloud particles are directly correlated with their wavelength-dependent optical properties. Therefore the incident stellar spectra may play an important role for the climatic effect of clouds. We discuss the influence of clouds with mean properties measured in the Earth's atmosphere on the surface temperatures and Bond albedos of Earth-like planets orbiting different types of main sequence dwarf stars.Comment: accepted for publication in A&

    The extrasolar planet Gliese 581 d: a potentially habitable planet? (Corrigendum to arXiv:1009.5814)

    Full text link
    We report here that the equation for H2O Rayleigh scattering was incorrectly stated in the original paper [arXiv:1009.5814]. Instead of a quadratic dependence on refractivity r, we accidentally quoted an r^4 dependence. Since the correct form of the equation was implemented into the model, scientific results are not affected.Comment: accepted to Astronomy&Astrophysic

    Evaluation of the degradation of fine asphalt-aggregate mixtures containing high reclaimed asphalt pavement contents

    Get PDF
    This paper evaluates the mechanical properties and performance of the fine aggregate matrix (FAM) existing within full reclaimed asphalt pavement (RAP) asphalt mixtures, in terms of their rheological and fatigue deterioration properties. The RAP material was produced in the laboratory to control its properties and to reduce the effects of variability associated with these materials. Four FAM mixtures were analysed, including a virgin hot mix asphalt, a 100%RAP, and two mixtures containing 50% RAP in combination with virgin materials using different penetration grade virgin binders. The analysis of the deterioration properties was based on the application of a fracture model that incorporates the viscoelastic properties of the material, the quality of the adhesive bonds developed between the aggregates and the corresponding bitumen present in each mixture, and the rate at which the material dissipates energy when subjected to cycling loading. The input parameters for this model include the results obtained from dynamic mechanical analysis and surface free energy tests. In general, the results showed that the incorporation of 50% RAP content increased the stiffness of the final mixtures, as expected. However, this hardening effect did not result in mixtures with inferior fatigue performance of the FAM present in the full mixtures, at the applied strain level

    Urban Cholera transmission hotspots and their implications for Reactive Vaccination: evidence from Bissau city, Guinea Bissau

    Get PDF
    Use of cholera vaccines in response to epidemics (reactive vaccination) may provide an effective supplement to traditional control measures. In Haiti, reactive vaccination was considered but, until recently, rejected in part due to limited global supply of vaccine. Using Bissau City, Guinea-Bissau as a case study, we explore neighborhood-level transmission dynamics to understand if, with limited vaccine and likely delays, reactive vaccination can significantly change the course of a cholera epidemic

    The habitability of a stagnant-lid Earth

    Full text link
    Plate tectonics is a fundamental component for the habitability of the Earth. Yet whether it is a recurrent feature of terrestrial bodies orbiting other stars or unique to the Earth is unknown. The stagnant lid may rather be the most common tectonic expression on such bodies. To understand whether a stagnant-lid planet can be habitable, i.e. host liquid water at its surface, we model the thermal evolution of the mantle, volcanic outgassing of H2_2O and CO2_2, and resulting climate of an Earth-like planet lacking plate tectonics. We used a 1D model of parameterized convection to simulate the evolution of melt generation and the build-up of an atmosphere of H2_2O and CO2_2 over 4.5 Gyr. We then employed a 1D radiative-convective atmosphere model to calculate the global mean atmospheric temperature and the boundaries of the habitable zone (HZ). The evolution of the interior is characterized by the initial production of a large amount of partial melt accompanied by a rapid outgassing of H2_2O and CO2_2. At 1 au, the obtained temperatures generally allow for liquid water on the surface nearly over the entire evolution. While the outer edge of the HZ is mostly influenced by the amount of outgassed CO2_2, the inner edge presents a more complex behaviour that is dependent on the partial pressures of both gases. At 1 au, the stagnant-lid planet considered would be regarded as habitable. The width of the HZ at the end of the evolution, albeit influenced by the amount of outgassed CO2_2, can vary in a non-monotonic way depending on the extent of the outgassed H2_2O reservoir. Our results suggest that stagnant-lid planets can be habitable over geological timescales and that joint modelling of interior evolution, volcanic outgassing, and accompanying climate is necessary to robustly characterize planetary habitability

    The dynamics of measles in sub-Saharan Africa.

    Get PDF
    Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur

    Biphasic pattern in the effect of severe measles infection; the difference between additive and multiplicative scale.

    Get PDF
    BACKGROUND: Infection with measles virus (MeV) causes immunosuppression and increased susceptibility to other infectious diseases. Only few studies reported a duration of immunosuppression, with varying results. We investigated the effect of immunosuppression on the incidence of hospital admissions for infectious diseases in Vietnamese children. METHODS: We used retrospective data (2005 to 2015; N = 4419) from the two pediatric hospitals in Ho Chi Minh City, Vietnam. We compared the age-specific incidence of hospital admission for infectious diseases before and after hospitalization for measles. We fitted a Poisson regression model that included gender, current age, and time since measles to obtain a multiplicative effect measure. Estimates were transformed to the additive scale. RESULTS: We observed two phases in the incidence of hospital admission after measles. The first phase started with a fourfold increased rate of admissions during the first month after measles, dropping to a level quite comparable to children of the same age before measles. In the second phase, lasting until at least 6 years after measles, the admission rate decreased further, with values up to 20 times lower than in children of the same age before measles. However, on the additive scale the effect size in the second phase was much smaller than in the first phase. CONCLUSION: The first phase highlights the public health benefits of measles vaccination by preventing measles and immune amnesia. The beneficial second phase is interesting, but its strength strongly depends on the scale. It suggests a complicated interaction between MeV infection and the host immunity

    Noise and Nonlinearity in Measles Epidemics: Combining Mechanistic and Statistical Approaches to Population Modeling

    Get PDF
    We present and evaluate an approach to analyzing population dynamics data using semimechanistic models. These models incorporate reliable information on population structure and underlying dynamic mechanisms but use nonparametric surface-fitting methods to avoid unsupported assumptions about the precise form of rate equations. Using historical data on measles epidemics as a case study, we show how this approach can lead to better forecasts, better characterizations of the dynamics, and better understanding of the factors causing complex population dynamics relative to either mechanistic models or purely descriptive statistical time-series models. The semimechanistic models are found to have better forecasting accuracy than either of the model types used in previous analyses when tested on data not used to fit the models. The dynamics are characterized as being both nonlinear and noisy, and the global dynamics are clustered very tightly near the border of stability (dominant Lyapunov exponent λ < 0). However, locally in state space the dynamics oscillate between strong short-term stability and strong short-term chaos (i.e., between negative and positive local Lyapunov exponents). There is statistically significant evidence for short-term chaos in all data sets examined. Thus the nonlinearity in these systems is characterized by the variance over state space in local measures of chaos versus stability rather than a single summary measure of the overall dynamics as either chaotic or nonchaotic

    Clouds in the atmospheres of extrasolar planets. II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds

    Full text link
    We study the impact of multi-layered clouds (low-level water and high-level ice clouds) on the thermal emission spectra of Earth-like planets orbiting different types of stars. Clouds have an important influence on such planetary emission spectra due to their wavelength dependent absorption and scattering properties. We also investigate the influence of clouds on the ability to derive information about planetary surface temperatures from low-resolution spectra.Comment: accepted for publication in A&
    • …
    corecore